使用模式构建:近似值模式(The Approximation Pattern)
假设现在有一个相当规模的城市,大约有3.9万人。人口的确切数字是相当不稳定的,人们会搬入搬出、有婴儿会出生、有人会死亡。我们也许要花上整天的时间来得到每天确切的居民数量。但在大多数情况下,39,000这个数字已经“足够好”了。同样,在许多我...
假设现在有一个相当规模的城市,大约有3.9万人。人口的确切数字是相当不稳定的,人们会搬入搬出、有婴儿会出生、有人会死亡。我们也许要花上整天的时间来得到每天确切的居民数量。但在大多数情况下,39,000这个数字已经“足够好”了。同样,在许多我...
贯穿整个《使用模式构建》,我希望你已经了解到一件事,即模式是什么样子取决于数据的访问方式。如果我们有许多相似的字段,属性模式可能是一个很好的选择。为了适配一小部分数据的访问会极大地改变我们的应用程序吗?也许异常值模式是值得考虑的。还有一些模...
在多年前,第一代PC拥有高达256KB的RAM和两个5.25英寸的软盘驱动器。没有硬盘,因为在当时它们极为昂贵。这些限制导致在处理大量(对那时来说)数据时由于内存不足,必须在物理上交换软盘。如果当时有办法只把我经常使用的数据(如同整体数据的...
我们已经在使用模式构建系列研究了各种优化存储数据的方法。现在,我们从另一个角度来看看模式设计。通常,仅仅存储数据并使其可用还不够。当我们可以从数据中计算出值时,数据会变得有用的多。最新Amazon Alexa的总销售收入是多少?有多少观众看...
到目前为止,在《使用模式构建》系列中,我们已经研究了多态模式、属性模式和桶模式。其中,尽管文档的模式略有不同,但从应用程序和查询的角度来看,文档的结构基本上是一致的。然而,如果情况并非如此会怎么样?当有数据不属于“正常”模式时会发生什么?如...
传统的数据库由于服务于单个节点,因此自然地为读写操作提供了顺序保证,这称为“因果一致性(causal consistency)”。分布式系统同样可以提供这些保证,但要做到这一点,就必须对所有节点上的相关事件进行协调和排序,并对某些操作完成的...
在本期《使用模式构建》中,我们将介绍桶模式。这种模式在处理物联网(IOT)、实时分析或通用时间序列数据时特别有效。通过将数据放在一起,我们可以更容易地将数据组织成特定的组,提高发现历史趋势或提供未来预测的能力,同时还能对存储进行优化。 桶模...
欢迎回到MongoDB模式设计系列。上一次我们研究了多态模式,它涵盖了集合中所有文档具有相似但不相同结构的情况。在本文中,我们将了解一下属性模式。属性模式特别适用于以下情况: 我们有一些大文档,它们有很多相似的字段,而这些字段的一个子集具有...
当涉及MongoDB时,一个经常被问到的问题是“我如何在MongoDB中为我的应用程序构造模式(schema)?”老实说,这要看情况而定。你的应用程序读操作比写操作多吗?从数据库中读取时需要将哪些数据放在一起?有哪些性能因素需要考虑?文档有...
MongoDB 4.0增加了一个能力,在副本处理写操作的同时可以由从节点(secondary)读取数据。为了理解这个的重要性,让我们看看4.0版本之前从节点是如何处理的。 背景 从一开始,MongoDB就是这样设计的:当主节点上有一系列的写...